If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16z^2-16z-21=0
a = 16; b = -16; c = -21;
Δ = b2-4ac
Δ = -162-4·16·(-21)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-40}{2*16}=\frac{-24}{32} =-3/4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+40}{2*16}=\frac{56}{32} =1+3/4 $
| 4x-14/5+x/20=x/4-1 | | X^2+(3x/x+3)^2=16 | | 24(-5/8x)+24(1/3)=24(-1/8x)+24(3/2) | | 125+10x=130+7x | | 1-4d=53 | | 5x=15625x-2 | | 5(2g-3)-4g=8 | | 8.8a+11=90.2 | | 8x+10-2x=4-5 | | (-5/8x)+(1/3)=(-1/8x)+(3/2) | | 22=-11/12w | | 2x^2+10x-5=-1 | | -5/8x+1/3=-1/8x+3/2 | | -7n+12=8-8n | | 15=-5/3y | | 8x+10-2=4x-5 | | 0.0008=10x | | -3.8x-4.1=6.3x+6 | | 16–15t–5=-14t–6 | | 2x+x-4x=11 | | X+30+x+2/5x+3/5x=180 | | 0.3(x+5)=5(0.1÷0.11x) | | 5(2n+4)=7(7n+8)+8 | | 5r-11r=36 | | 53=3(3z+3)+3z | | (-3y)-8=25 | | x^-5x-2=0 | | 0=5x^2-60x+126 | | 0.29x-0.25=0.43x÷0.03 | | 0.2(x+3)-0.5(x+3)=0.3x-0.9 | | -8y+8=37y-y | | 1=0.3x-0.9-29 |